Involvement of Abscisic Acid in Regulating Water Status in Phaseolus vulgaris L. during Chilling.

نویسندگان

  • A Pardossi
  • P Vernieri
  • F Tognoni
چکیده

During the first hours of chilling, bean (Phaseolus vulgaris L., cv Mondragone) seedlings suffer severe water stress and wilt without any significant increase in leaf abscisic acid (ABA) content (P. Vernieri, A. Pardossi, F. Tognoni [1991] Aust J Plant Physiol 18: 25-35). Plants regain turgor after 30 to 40 h. We hypothesized that inability to rapidly synthesize ABA at low temperatures contributes to chilling-induced water stress and that turgor recovery after 30 to 40 h is mediated by changes in endogenous ABA content. Entire bean seedlings were subjected to long-term (up to 6 d) chilling (3 degrees C, 0.2-0.4 kPa vapor pressure deficit, 100 mumol.m(-2).s(-1) photosynthetic photon flux density, continuous fluorescent light). During the first 24 h, stomata remained open, and plants rapidly wilted as leaf transpiration exceeded root water absorption. During this phase, ABA did not accumulate in leaves or in roots. After 24 h, ABA content increased in both tissues, leaf diffusion resistance increased, and plants rehydrated and regained turgor. No osmotic adjustment was associated with turgor recovery. Following turgor recovery, stomata remained closed, and ABA levels in both roots and leaves were elevated compared with controls. The application of ABA (0.1 mm) to the root system of the plants throughout exposure to 3 degrees C prevented the chilling-induced water stress. Excised leaves fed 0.1 mm ABA via the transpiration stream had greater leaf diffusion resistance at 20 and 3 degrees C compared with non-ABA fed controls, but the amount of ABA needed to elicit a given degree of stomatal closure was higher at 3 degrees C compared with 20 degrees C. These findings suggest that endogenous ABA may play a role in ameliorating plant water status during chilling.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Abscisic Aldehyde Is an Intermediate in the Enzymatic Conversion of Xanthoxin to Abscisic Acid in Phaseolus vulgaris L. Leaves.

The enzymatic conversion of xanthoxin to abscisic acid by cell-free extracts of Phaseolus vulgaris L. leaves has been found to be a two-step reaction catalyzed by two different enzymes. Xanthoxin was first converted to abscisic aldehyde followed by conversion of the latter to abscisic acid. The enzyme activity catalyzing the synthesis of abscisic aldehyde from xanthoxin (xanthoxin oxidase) was ...

متن کامل

Abscisic Aldehyde Is an Intermediate in the Enzymatic Conversion of Xanthoxin to Abscisic Acid in Phaseolus vulgaris L . Leaves 1

The enzymatic conversion of xanthoxin to abscisic acid by cellfree extracts of Phaseolus vulgaris L. leaves has been found to be a two-step reaction catalyzed by two different enzymes. Xanthoxin was first converted to abscisic aldehyde followed by conversion of the latter to abscisic acid. The enzyme activity catalyzing the synthesis of abscisic aldehyde from xanthoxin (xanthoxin oxidase) was p...

متن کامل

Growth Regulators Have Rapid Effects on Photosynthate Unloading from Seed Coats of Phaseolus vulgaris L.

Of nine plant growth regulators (indoleacetic acid, 1-naphthalene acetic acid, gibberellic acid, giberellin 4/7, 6-benzylaminopurine, 6-furfurylaminopurine, abscisic acid, and 1-aminocyclopropane carboxylic acid) tested, only 6-benzylaminopurine and abscisic acid affected (14)C-photosynthate unloading from excised seed coats of Phaseolus vulgaris L. Unloading, in the presence of KCl, was stimul...

متن کامل

Influence of cadmium on water relations, stomatal resistance, and abscisic Acid content in expanding bean leaves.

Ten day old bush bean plants (Phaseolus vulgaris L. cv Contender) were used to analyze the effects of 3 micromolar Cd on the time courses of expansion growth, dry weight, leaf water relations, stomatal resistance, and abscisic acid (ABA) levels in roots and leaves. Control and Cd-treated plants were grown for 144 hours in nutrient solution. Samples were taken at 24 hour intervals. At the 96 and...

متن کامل

Abscisic Acid stimulates elongation of excised pea root tips.

Excised Pisum sativum L. root tips were incubated in a pH 5.2 sucrose medium containing abscisic acid. Elongation growth was inhibited by 100 mum abscisic acid. However, decreasing the abscisic acid concentration caused stimulation of elongation, the maximum response (25% to 30%) occurring at 1 mum abscisic acid. Prior to two hours, stimulation of elongation by 1 mum abscisic acid was not detec...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Plant physiology

دوره 100 3  شماره 

صفحات  -

تاریخ انتشار 1992